Circadian foraging rhythms of bumblebees monitored by radio-frequency identification

Journal
J Biol Rhythms
Volume
24
Date
August 2010
Issue
4
Pages
257-267
Full Article
Jürgen Stelzer R
Stanewsky R
Chittka L.
Abstract

Circadian clocks enable organisms to anticipate changes of environmental conditions. In social insects, the colony as a superorganism has a foraging rhythm aligned to the diurnal patterns of resource availability. Within this colony rhythm, the diurnal patterns of individuals are embedded, and various tasks within the colony are performed at different times by different individuals to best serve the colony as a whole. Recent studies have shown that social cues influence the traits of the circadian clock in social insects, but keeping track of the activity of individual workers is not an easy task. Here the authors use fully automatic radio-frequency identification (RFID) to analyze the circadian rhythms of bumblebee foragers (Bombus terrestris) in the normal social context of their nest. They monitored their foraging patterns under different light conditions in the laboratory, including light:dark cycles (LD) as well as constant darkness (DD) and constant light conditions (LL). Their results show that the majority of bumblebee foragers exhibit robust circadian rhythms in LD under laboratory conditions, while they show free-running rhythms both in DD and LL, with free-running periods being significantly shorter in LL conditions. The authors also found that bumblebee workers show an increased level of arrhythmic activity (“death dance”) in the hours or days before their death.